

Our Ref.: Your Ref.:

DD106 Lot 390 RP TPB/A/YL-KTS/990

By Email

6 May 2024

The Secretary, Town Planning Board, 15/F, North Point Government Offices, 333 Java Road, North Point, Hong Kong

Dear Sir,

1st Further Information

Temporary Shop and Services and Eating Place for a Period of 5 Years in "Village Type Development" Zone, Lot 390 RP (Part) in D.D. 106, Kam Sheung Road, Kam Tin, Yuen Long

(S.16 Planning Application No. A/YL-KTS/990)

We are writing to submit Further Information to address departmental comments of the subject application (Appendix I).

Should you require more information regarding the application, please contact our or the undersigned at your convenience. Thank you for your kind attention.

Yours faithfully,

For and on behalf of

R-riches Property Consultants Limited

Matthew NG

Planning and Development Manager

cc DPO/FSYLE, PlanD

(Attn.: Mr. Christopher PANG

email: cyfpang@pland.gov.hk

(Attn.: Mr. MO Ying-yeung

email: yymo@pland.gov.hk

R

Responses-to-Comments

Temporary Shop and Services and Eating Place for a Period of 5 Years in "Village Type Development" Zone, Lot 390 RP (Part) in D.D. 106, Kam Sheung Road, Kam Tin, Yuen Long

(Application No. A/YL-KTS/990)

(i) A RtoC Table:

	Departmental Comments	Applicant's Responses	
1. C	comments of the Chief Engineer/Mainland	North, Drainage Services Department	
i)	Please advise the proposed type of drainage facilities to be used (U-channels/pipes) under this application. The gradients and the sizes of the proposed U-channels/pipes should be shown on the drainage plan for clarity.	Please note existing U-channels are used in the application site. Please find Figure 3 and Appendix A for gradient, size and checking of existing U-channels.	
ii)	It is found that the invert levels of all proposed catchpits are +9.4. Please demonstrate with hydraulic calculation that the proposed drainage facilities are adequate to collect, convey and discharge the surface runoff accrued on the application site and the overland flow intercepted form the adjacent lands.	Noted. Please find Figure 3 and Appendix A for gradient, size and checking of existing U-channels. The catchment plan is shown in Figure 4 .	
iii)	Please indicate clearly the full alignment of the discharge path from the application site all the way down to the ultimate discharge point (e.g. wellestablished stream course/public drainage system).	The runoff is proposed to be discharge to the existing ditch (approx. 1m width) beside Kam Sheung Road. The alignment of the drains is shown in and Figure 3 for your perusal.	
iv)	The existing drain, to which the applicant proposed to discharge the stormwater from the subject site was not maintained by this office. The applicant should demonstrate that the proposed drainage construction/ improvement/ modification works and the operation of the drainage can be practicably implemented on site. In the case that it	Noted.	

	is a local village drains, DO/YL should be consulted.	
v)	Further to (iv) above, since there is no record of the said discharge path, please provide site photos to demonstrate its presence and existing condition.	Noted. Please refer to the photo in Annex A .
vi)	Please confirm if any walls or hoarding are/to be erected or laid along the site boundary. If affirmative, adequate opening should be provided to intercept the existing overland flow passing through the site and please provide its details for comments.	Noted. Fence with gap would be provided. Please refer to the below photo for the existing fencing.
vii)	Standard details should be provided to indicate the sectional details of the proposed u-channel and the catchpit/sand trap.	Please refer to standard drawing in Appendix C showing u-channel and catchpit with trap for your review.
viii)	The development should neither obstruct overland flow nor adversely affect existing natural streams, village drains, ditches and the adjacent areas, etc.	Noted.
ix)	The applicant should consult DLO/YL and demonstrate that the proposed drainage construction/improvement/modification works and the operation of the drainage outside his lot boundary can be practicably implemented on site.	Noted.

Temporary Shop and Services and Eating Place for a Period of 5 Years in "Village Type Development" zone, Lot 390 RP (Part) in D.D. 106, Kam Sheung Road, Yuen Long, New Territories

Drainage Appraisal

March 2024

Draina	ge An	nraisal
Diania	5C / 1P	piaisai

_	• . 1			•	nte	
12	n	\mathbf{a}	$\mathbf{O}\mathbf{T}$	$\boldsymbol{\Gamma}$	nto	nt
10	_	-	VI.	LU	1116	IIL

1.	Intro	oduction	1
		Background	
		The Site	
		elopment Proposal	
		The Proposed Development	
		essment Criteria	
		ting and Proposed Drainage System	
5.	Con	clusion	5

List of Table

Table 1 - Key Development Parameters	2
Table 2– Design Return Periods under SDM	2

List of Figure

Figure 1 – Site Location Plan

Figure 2 - Existing Drainage Plan

Figure 3 – Existing Internal Drainage System

Figure 4 – Catchment Plan

List of Appendix

Appendix A – Existing U Channel Design Checking

Appendix B - Development Layout Plan

Appendix C – Reference Drawings for UChannel and Catchpit

Drainage Appraisal

1. Introduction

1.1 Background

- 1.1.1 The applicant seeks to use Lot 390 RP (Part) in D.D. 106, Kam Sheung Road, Yuen Long, New Territories (the Site) for 'Temporary Shop and Services and Eating Place for a Period of 5 Years (Proposed Development).
- 1.1.2 This Drainage Proposal is to support the planning application for the proposed use.

1.2 The Site

- 1.2.1 The Application Site area is about 1,217m², and it situates beside Kam Sheung Road to the west. The site is currently paved and occupied by existing structures. The site location plan is shown in **Figure 1**.
- 1.2.2 The Application Site is surrounded by temporary structures. It is generally flat with existing ground level of approx. +9.8 mPD. It is intended to keep the proposed level unchanged at +9.8 mPD.
- 1.2.3 There is an existing public drainage and ditch along Kam Sheung Road. Existing Drainage Plan is shown in **Figure 2** for reference. There are existing internal drainage channels within site area, the existing internal drainage system is shown in **Figure 3**.
- 1.2.4 Proposed Development Layout plan is shown in **Appendix B** for reference.

Page | 1 Mar-24

2. Development Proposal

2.1 The Proposed Development

2.1.1 The total site area is approximately 1,217m². The indicative development schedule is summarized in **Table 1** below for technical assessment purpose.

Proposed Development	
Total Site Area (m²)	1,217
Assume all proposed site area as paved	1,217
area after development for assessment	
purpose (m ²)	

Table 1 - Key Development Parameters

3. Assessment Criteria

3.1.1 The Recommended Design Return Period based on Flood Level from SDM (Table 10) is adopted for this DIA. The recommendation is summarized in **Table 2** below.

Description	Design Return Periods
Intensively Used Agricultural Land	2 – 5 Years
Village Drainage Including Internal Drainage System under a polder Scheme	10 Years
Main Rural Catchment Drainage Channels	50 Years
Urban Drainage Trunk System	200 Years
Urban Drainage Branch System	50 Years

Table 2- Design Return Periods under SDM

3.1.2 The site and the surroundings are generally flat. The proposed village drainage system intended to collect runoff from the internal site and discharge to existing nearby public drainage system. 1 in 10 years return period is adopted for the drainage design.

Page | 2 Mar-24

- 3.1.3 Stormwater drainage design will be carried out in accordance with the criteria set out in the Stormwater Drainage Manual published by DSD. The proposed design criteria to be adopted for design of this stormwater drainage system and factors which have been considered are summarised below.
 - 1. Intensity-Duration-Frequency Relationship The Recommended Intensity-Duration-Frequency relationship is used to estimate the intensity of rainfall. It can be expressed by the following algebraic equation.

$$i = \frac{a}{(t_d + b)^c}$$

The site is located within the HKO Headquarters Rainfall Zone. Therefore, for 10 years return period, the following values are adopted.

a =
$$471.9$$

b = 3.02
c = 0.397

2. The peak runoff is calculated by the Rational Method i.e. $Q_p = 0.278 \text{CiA}$

where Q_p = peak runoff in m³/s C = runoff coefficient (dimensionless) i = rainfall intensity in mm/hr A = catchment area in km²

3. The run-off coefficient (C) of surface runoff are taken as follows:

Paved Area: C = 0.95
 Unpaved Area: C = 0.35

4. Manning's Equation is used for calculation of velocity of flow inside the channels:

Manning's Equation:
$$v = \frac{R^{\frac{1}{6}}}{n} R^{\frac{1}{2}} S_f^{\frac{1}{2}}$$

Where,

V = velocity of the pipe flow (m/s)

S_f = hydraulic gradient

n = manning's coefficient

R = hydraulic radius (m)

5. Colebrook-White Equation is used for calculation of velocity of flow inside the pipes:

Colebrook-White Equation:
$$\underline{v} = -\sqrt{32gRS} \log \log \left(\frac{k_s}{14.8R} + \frac{1.255v}{R\sqrt{32gRS_f}} \right)$$

where,

V = velocity of the pipe flow (m/s)

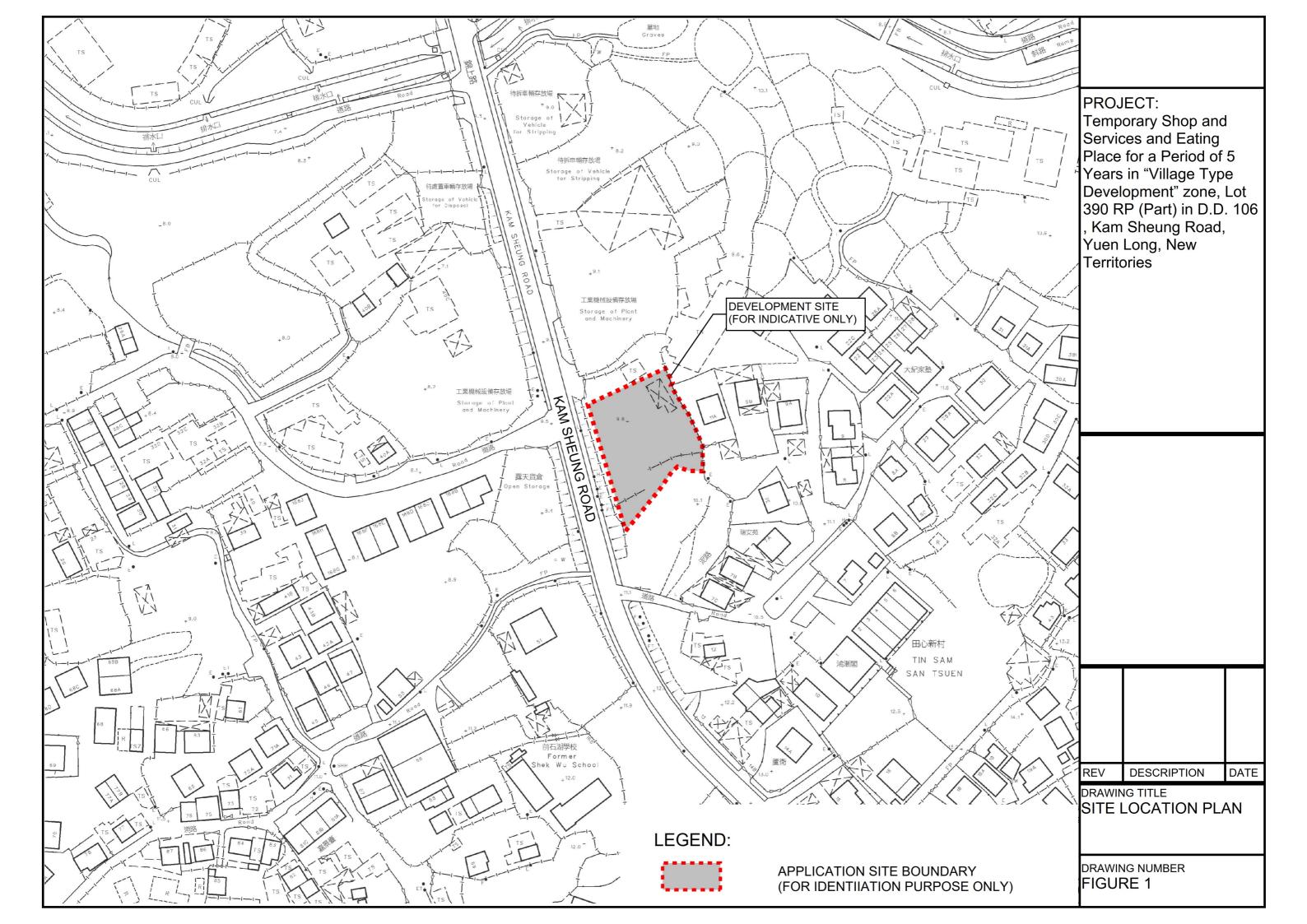
 S_f = hydraulic gradient k_f = roughness value (m)

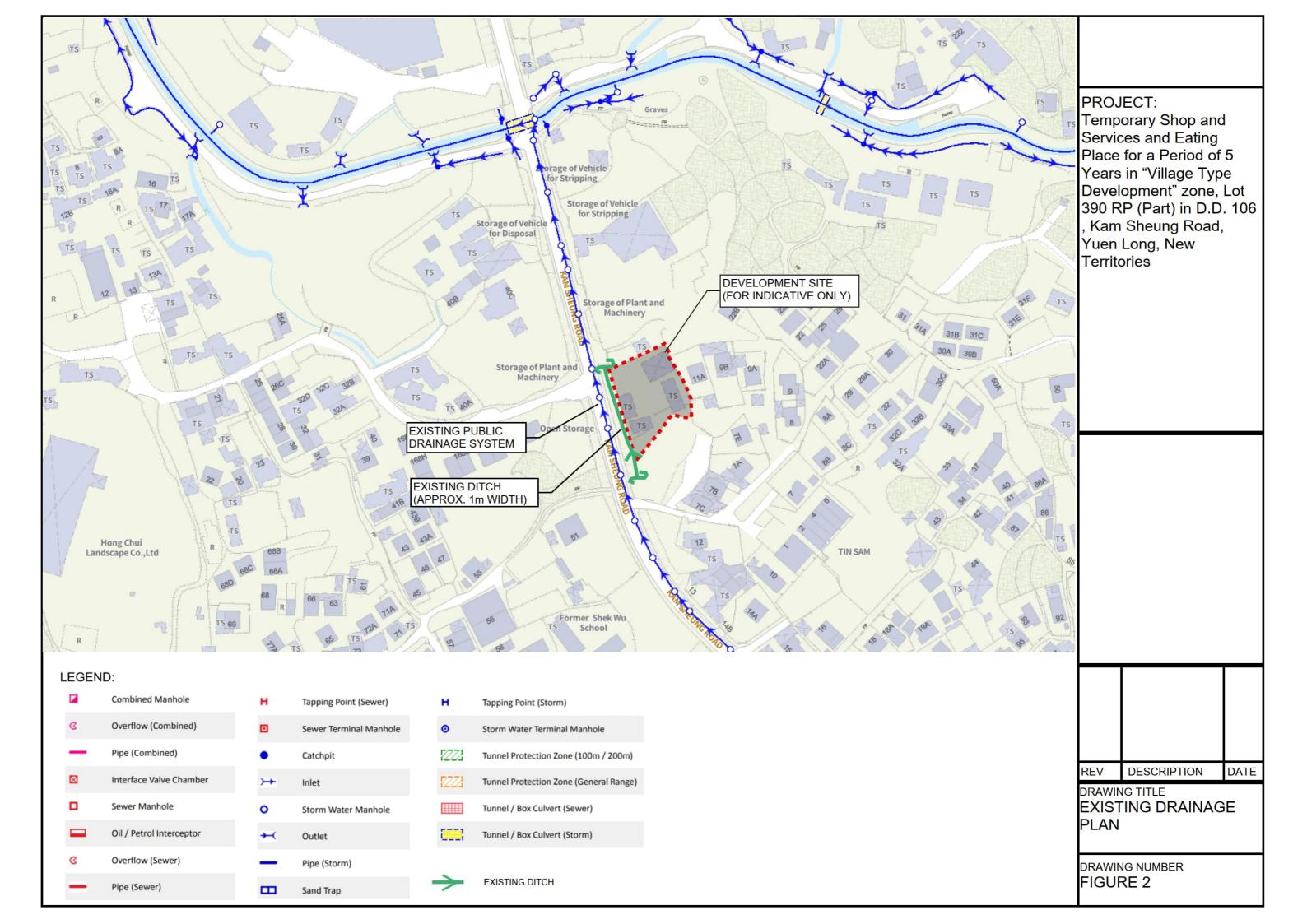
v = kinematics viscosity of fluid

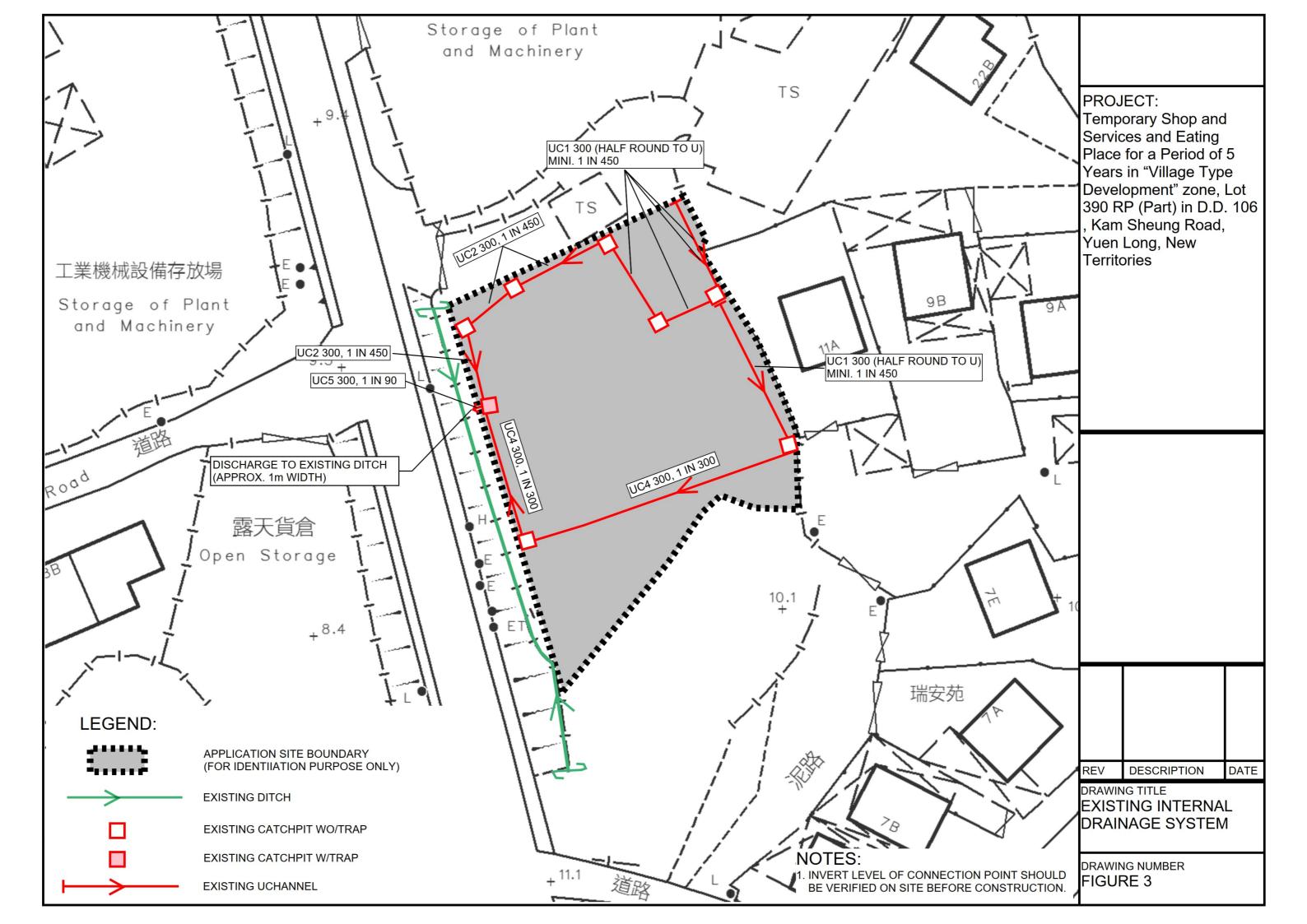
D = pipe diameter (m) R = hydraulic radius (m)

4. Existing and Proposed Drainage System

- 4.1.1 The Application Site and the surrounding areas are generally flat. There are existing internal Uchannels and catchpit within Application Site. Design review on the existing Uchannels has been conducted to demonstrate the existing system is capable of carrying the runoff from the Application Site. The alignment, size and gradient of the existing internal drains are shown in **Figure 3**. The catchment plan is shown in **Figure 4**. The checking of existing internal drains is shown in **Appendix A**.
- 4.1.2 With the existing internal drainage system to collect the runoff from the application site and discharge to the existing ditch/ drainage system beside Kam Sheung Road, no significant drainage impact to the area after the implementation of the development is anticipated.
- 4.1.3 The reference standard drawings of existing drains are shown in **Appendix C**.


5. Conclusion


- 5.1.1 A drainage appraisal has been conducted for the Proposed Development. The surface runoff from the Application Site will be collected by the existing internal Uchannels and discharged to the existing ditch/ drainage system beside Kam Sheung Road.
- 5.1.2 With the proposed drainage system, it is anticipated that there will be no significant drainage impact to the area after the implementation of the development.


- End of Text -

Page | 5 Mar-24

FIGURES

Appendix

U Channel 1 (Zone A1)				
Runoff Estimation				
Design Return Period		1 in 10	years	
Paved Area	212 =	212	(m2)	_
Unpaved Area		0	(m2)	$i = \frac{a}{(t_d + b)^c}$
Total Equivalent Area	212 x 0.95 + 0 x 0.35 =	201	(m2)	$t = \frac{t}{(t_d + b)^c}$
Rainfall Intensity, I *	1	206	mm/hr	/
Design Discharge Rate, Q	0.278 x 201 x 206 / 1000000 =	0.012	m3/s	
U Channel (Half round to U) Channel Size	1	200	()	
		300	(mm)	
Gradient		1 in 450		
Velocity Capacity		0.60 0.021	m/s m3/s	
	1			
Utilization	0.012 / 0.021	= 54.62	%	ОК
U Channel 2 (Zone A1 + A2)				
Runoff Estimation				
Design Return Period		1 in 10	years	
Paved Area	463 =	463	(m2)	
Unpaved Area	1	0	(m2)	. а
Total Equivalent Area	463 x 0.95 + 0 x 0.35 =	440	(m2)	$ i = \frac{a}{(t_d + b)^c} $
Rainfall Intensity, I *		206	mm/hr	$(t_d + n)^c$
Design Discharge Rate, Q	0.278 x 0 x 206 / 1000000 =	0.025	m3/s	
		0.020		
III Ohamad				
U Channel Channel Size	1	300	(mm)	
Gradient	1	1 in 450	(11/111)	
Velocity	1	0.75	m/s	
Capacity	1	0.060	m3/s	
Utilization	0.025 / 0.06	= 42.16	%	OK
Runoff Estimation Design Return Period Paved Area	121 =	1 in 10	years (m2)	
Unpaved Area		0	(m2)	, a
Total Equivalent Area	121 x 0.95 + 0 x 0.35 =	115	(m2)	$ i = \frac{a}{(t_d + b)^c} $
Rainfall Intensity, I *		206	mm/hr	$(\iota_d + \upsilon)$
Design Discharge Rate, Q	0.278 x 115 x 206 / 1000000 =	0.007	m3/s	
U Channel (Half round to U)			1	
Channel Size		300	(mm)	
Channel Size Gradient		1 in 450	(mm)	
Channel Size Gradient Velocity		1 in 450 0.60	m/s	
Channel Size Gradient		1 in 450		
Channel Size Gradient Velocity	0.007 / 0.021	1 in 450 0.60	m/s	ОК
Channel Size Gradient Velocity Capacity Utilization		1 in 450 0.60 0.021	m/s m3/s	ок
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2		1 in 450 0.60 0.021	m/s m3/s	ок
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2 Runoff Estimation		1 in 450 0.60 0.021 = 31.18	m/s m3/s %	ОК
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2 Runoff Estimation Design Return Period	+ C1)	1 in 450 0.60 0.021 = 31.18	m/s m3/s %	ОК
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2 Runoff Estimation Design Return Period Paved Area	+ C1) 760 + 511 x 0.7 =	1 in 450 0.60 0.021 = 31.18	m/s m3/s % years (m2)	
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2 Runoff Estimation Design Return Period Pawed Area Unpawed Area	+ C1) 760 + 511 x 0.7 = 511 x 0.3 =	1 in 450 0.60 0.021 = 31.18 1 in 10 1118 153	m/s m3/s % years (m2) (m2)	
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2 Runoff Estimation Design Return Period Paved Area Unpaved Area Total Equivalent Area	+ C1) 760 + 511 x 0.7 =	1 in 450 0.60 0.021 = 31.18 1 in 10 1118 153 1115	m/s m3/s % years (m2) (m2) (m2)	OK $ \qquad \cdot \ l = \frac{a}{(t_d + b)^c} $
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2 Runoff Estimation Design Return Period Paved Area Unpaved Area Total Equivalent Area Rainfall Intensity, I *	760 + 511 x 0.7 = 511 x 0.3 = 1118 x 0.95 + 153 x 0.35 =	1 in 450 0.60 0.021 = 31.18 1 in 10 1118 153 1115 206	m/s m3/s % years (m2) (m2) (m2) mm/hr	
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2 Runoff Estimation Design Return Period Paved Area Unpaved Area Unpaved Area	+ C1) 760 + 511 x 0.7 = 511 x 0.3 =	1 in 450 0.60 0.021 = 31.18 1 in 10 1118 153 1115	m/s m3/s % years (m2) (m2) (m2)	
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2 Runoff Estimation Design Return Period Paved Area Unpaved Area Total Equivalent Area Rainfall Intensity, I* Design Discharge Rate, Q	760 + 511 x 0.7 = 511 x 0.3 = 1118 x 0.95 + 153 x 0.35 =	1 in 450 0.60 0.021 = 31.18 1 in 10 1118 153 1115 206	m/s m3/s % years (m2) (m2) (m2) mm/hr	
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2 Runoff Estimation Design Return Period Paved Area Unpaved Area Unpaved Area Rainfall Intensity, I * Design Discharge Rate, Q U Channel	760 + 511 x 0.7 = 511 x 0.3 = 1118 x 0.95 + 153 x 0.35 =	1 in 450 0.60 0.021 = 31.18 1 in 10 1118 153 1115 206 0.064	m/s m3/s % years (m2) (m2) (m2) (m2) mm/hr m3/s	
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2 Runoff Estimation Design Return Period Paved Area Unpaved Area Total Equivalent Area Rainfall Intensity, I* Design Discharge Rate, Q U Channel Channel Size	760 + 511 x 0.7 = 511 x 0.3 = 1118 x 0.95 + 153 x 0.35 =	1 in 450 0.60 0.021 = 31.18 1 in 10 1118 153 1115 206 0.064	m/s m3/s % years (m2) (m2) (m2) mm/hr	
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2 Runoff Estimation Design Return Period Paved Area Unpaved Area Total Equivalent Area Rainfall Intensity, I* Design Discharge Rate, Q U Channel Channel Size Gradient	760 + 511 x 0.7 = 511 x 0.3 = 1118 x 0.95 + 153 x 0.35 =	1 in 450 0.60 0.021 = 31.18 1 in 10 1118 153 1115 206 0.064	m/s m3/s % years (m2) (m2) (m2) mm/hr m3/s	
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2 Runoff Estimation Design Return Period Paved Area Unpaved Area Unpaved Area Rainfall Intensity, I * Design Discharge Rate, Q U Channel Channel Size Gradient Velocity	760 + 511 x 0.7 = 511 x 0.3 = 1118 x 0.95 + 153 x 0.35 =	1 in 450 0.60 0.021 = 31.18 1 in 10 1118 153 1115 206 0.064 1 in 300 1 in 0.91	m/s m3/s % % years (m2) (m2) (m2) mm/hr m3/s (mm) m/s	
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2 Runoff Estimation Design Return Period Paved Area Unpaved Area Total Equivalent Area Rainfall Intensity, I * Design Discharge Rate, Q U Channel Channel Size Gradient Velocity Capacity	760 + 511 x 0.7 = 511 x 0.3 = 1118 x 0.95 + 153 x 0.35 = 0.278 x 1115 x 206 / 1000000 =	1 in 450 0.60 0.021 = 31.18 1 in 10 1118 153 1115 206 0.064 300 0.91 0.973	m/s m3/s % years (m2) (m2) (m2) mm/hr m3/s (mm) m/s m3/s	$ i = \frac{a}{(t_d + b)^c} $
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2 Runoff Estimation Design Return Period Paved Area Unpaved Area Unpaved Area Total Equivalent Area Rainfall Intensity, I * Design Discharge Rate, Q U Channel Channel Size Gradient Velocity	760 + 511 x 0.7 = 511 x 0.3 = 1118 x 0.95 + 153 x 0.35 =	1 in 450 0.60 0.021 = 31.18 1 in 10 1118 153 1115 206 0.064 1 in 300 1 in 0.91	m/s m3/s % % years (m2) (m2) (m2) mm/hr m3/s (mm) m/s	
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2 Runoff Estimation Design Return Period Paved Area Unpaved Area Unpaved Area Total Equivalent Area Rainfall Intensity, I* Design Discharge Rate, Q U Channel Channel Size Gradient Velocity Capacity Utilization	760 + 511 x 0.7 = 511 x 0.3 = 1118 x 0.95 + 153 x 0.35 = 0.278 x 1115 x 206 / 1000000 =	1 in 450 0.60 0.021 = 31.18 1 in 10 1118 153 1115 206 0.064 300 0.91 0.973	m/s m3/s % years (m2) (m2) (m2) mm/hr m3/s (mm) m/s m3/s	$ i = \frac{a}{(t_d + b)^c} $
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2 Runoff Estimation Design Return Period Pawed Area Unpawed Area Unpawed Area Total Equivalent Area Rainfall Intensity, 1* Design Discharge Rate, Q U Channel Channel Size Gradient Velocity Capacity Utilization U Channel 5 (Zone A1 + A2	760 + 511 x 0.7 = 511 x 0.3 = 1118 x 0.95 + 153 x 0.35 = 0.278 x 1115 x 206 / 1000000 =	1 in 450 0.60 0.021 = 31.18 1 in 10 1118 153 1115 206 0.064 300 0.91 0.973	m/s m3/s % years (m2) (m2) (m2) mm/hr m3/s (mm) m/s m3/s	$ i = \frac{a}{(t_d + b)^c} $
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2 Runoff Estimation Design Return Period Paved Area Unpaved Area Total Equivalent Area Rairfall Intensity, I* Design Discharge Rate, Q U Channel Channel Size Gradient Velocity Capacity Utilization U Channel 5 (Zone A1 + A2 - Runoff Estimation	760 + 511 x 0.7 = 511 x 0.3 = 1118 x 0.95 + 153 x 0.35 = 0.278 x 1115 x 206 / 1000000 =	1 in 450 0.60 0.021 = 31.18 1 in 10 1118 153 1115 206 0.064 1 in 300 0.91 0.073 = 87.29	m/s m3/s % years (m2) (m2) (m2) (m2) (m2) mm/hr m3/s (mm) m/s m3/s	$ i = \frac{a}{(t_d + b)^c} $
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2 Runoff Estimation Design Return Period Paved Area Unpaved Area Total Equivalent Area Rainfall Intensity, 1* Design Discharge Rate, Q U Channel Channel Size Gradient Velocity Capacity Utilization U Channel 5 (Zone A1 + A2 - Runoff Estimation Design Return Period	760 + 511 x 0.7 = 511 x 0.3 = 1118 x 0.95 + 153 x 0.35 = 0.278 x 1115 x 206 / 1000000 = 0.064 / 0.073	1 in 450 0.60 0.021 = 31.18 1 in 10 1118 153 1115 206 0.064 1 in 300 0.91 0.97 0.97 1 in 10	m/s m3/s % years (m2) (m2) (m2) (m2) (m2) (m3/s m/hr m3/s (mm) m/s m3/s	$ i = \frac{a}{(t_d + b)^c} $
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2 Runoff Estimation Design Return Period Paved Area Unpawed Area Total Equivalent Area Rainfall Intensity, 1* Design Discharge Rate, Q U Channel U Channel Cradient Velocity Capacity Utilization U Channel 5 (Zone A1 + A2 - Runoff Estimation Design Return Period Paved Area	760 + 511 x 0.7 = 511 x 0.3 = 1118 x 0.95 + 153 x 0.35 = 0.278 x 1115 x 206 / 1000000 =	1 in 450 0.60 0.60 0.021 = 31.18 1 in 10 1118 153 1115 206 0.064 1 in 300 0.91 0.073 = 87.29	m/s m3/s years (m2) (m2) (m2) mm/hr m3/s (mm) m/s m3/s	$ \cdot \ i = \frac{a}{(t_d + b)^c} $ OK
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2 Runoff Estimation Design Return Period Paved Area Unpaved Area Total Equivalent Area Rainfall Intensity, I * Design Discharge Rate, Q U Channel Channel Size Gradient Velocity Capacity Utilization U Channel 5 (Zone A1 + A2 - Runoff Estimation Design Return Period Paved Area Unpaved Area Unpaved Area	760 + 511 x 0.7 = 511 x 0.3 = 1118 x 0.95 + 153 x 0.35 = 0.278 x 11115 x 206 / 1000000 = 0.064 / 0.073 + B1 + B2 + C1)	1 in 450 0.60 0.021 = 31.18 1 in 10 1118 153 1115 206 0.064 300 0.91 0.91 0.97 300 1 in 300 0.91 0.97 1 in 10 1581 1581 1581	m/s m3/s years (m2) (m2) (m2) (m2) (m3/s (mm) m/s m3/s vears (m2) (m2) (m2) (m2) (m2) (m2) (m2) (m2)	$ \cdot \ i = \frac{a}{(t_d + b)^c} $ OK
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2 Runoff Estimation Design Return Period Paved Area Unpaved Area Unpaved Area Ungaved Area Ungaved Area Urgaved Area Urgaved Area Urgaved Area Ungaved Area Ungaved Area Urgaved Area	760 + 511 x 0.7 = 511 x 0.3 = 1118 x 0.95 + 153 x 0.35 = 0.278 x 1115 x 206 / 1000000 = 0.064 / 0.073	1 in 450 0.60 0.021 = 31.18 1 in 10 1118 153 1115 206 0.064 300 1 in 300 0.91 0.91 0.97 300 1 in 10 1581 158	m/s m3/s % years (m2) (m2) (m2) (m2) mn/hr m3/s (mm) m/s m3/s	$ i = \frac{a}{(t_d + b)^c} $
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2 Runoff Estimation Design Return Period Pawed Area Unpawed Area Total Equivalent Area Rainfall Intensity, I * U Channel Channel Size Gradient Velocity Capacity Utilization U Channel 5 (Zone A1 + A2 - Runoff Estimation Design Return Period Pawed Area Unpawed Area Unpawed Area Unpawed Area Total Equivalent Area Rainfall Intensity, I *	760 + 511 x 0.7 = 511 x 0.3 = 1118 x 0.95 + 153 x 0.35 = 0.278 x 1115 x 206 / 1000000 = 0.064 / 0.073 + B1 + B2 + C1) 463 + 1118 = 1581 x 0.95 + 153 x 0.35 =	1 in 450 0.60 0.021 = 31.18 1 in 10 1118 153 1115 206 0.064 1 in 300 0.91 0.073 = 87.29 1 in 10 1581 153 1555 206	m/s m3/s years (m2) (m2) (m2) (m2) (m3/s (mm) m3/s years (m2) (m2) (m2) (m2) (m2) (m2) (m2) (m2)	$ \cdot \ i = \frac{a}{(t_d + b)^c} $ OK
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2 Runoff Estimation Design Return Period Paved Area Unpaved Area Unpaved Area Ungaved Area Ungaved Area Urgaved Area Urgaved Area Urgaved Area Ungaved Area Ungaved Area Urgaved Area	760 + 511 x 0.7 = 511 x 0.3 = 1118 x 0.95 + 153 x 0.35 = 0.278 x 11115 x 206 / 1000000 = 0.064 / 0.073 + B1 + B2 + C1)	1 in 450 0.60 0.021 = 31.18 1 in 10 1118 153 1115 206 0.064 300 1 in 300 0.91 0.91 0.97 300 1 in 10 1581 158	m/s m3/s % years (m2) (m2) (m2) (m2) mn/hr m3/s (mm) m/s m3/s	$ \cdot \ i = \frac{a}{(t_d + b)^c} $ OK
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2 Runoff Estimation Design Return Period Paved Area Unpaved Area Total Equivalent Area Rainfall Intensity, I* Design Discharge Rate, Q U Channel Channel Size Gradient Velocity Capacity Utilization U Channel 5 (Zone A1 + A2 Runoff Estimation Design Return Period Paved Area Unpaved Area Total Equivalent Area Rainfall Intensity, I* Design Discharge Rate, Q	760 + 511 x 0.7 = 511 x 0.3 = 1118 x 0.95 + 153 x 0.35 = 0.278 x 1115 x 206 / 1000000 = 0.064 / 0.073 + B1 + B2 + C1) 463 + 1118 = 1581 x 0.95 + 153 x 0.35 =	1 in 450 0.60 0.021 = 31.18 1 in 10 1118 153 1115 206 0.064 1 in 300 0.91 0.073 = 87.29 1 in 10 1581 153 1555 206	m/s m3/s years (m2) (m2) (m2) (m2) (m3/s (mm) m3/s years (m2) (m2) (m2) (m2) (m2) (m2) (m2) (m2)	$ \cdot \ i = \frac{a}{(t_d + b)^c} $ OK
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2 Runoff Estimation Design Return Period Pawed Area Unpawed Area Total Equivalent Area Rainfall Intensity, 1* Design Discharge Rate, Q U Channel U Channel Size Gradient Velocity Capacity Utilization U Channel 5 (Zone A1 + A2 Runoff Estimation Design Return Period Pawed Area Unpawed Area Unpawed Area Rainfall Intensity, 1* Design Discharge Rate, Q	760 + 511 x 0.7 = 511 x 0.3 = 1118 x 0.95 + 153 x 0.35 = 0.278 x 1115 x 206 / 1000000 = 0.064 / 0.073 + B1 + B2 + C1) 463 + 1118 = 1581 x 0.95 + 153 x 0.35 =	1 in 450 0.60 0.60 0.021 = 31.18 1 in 10 1118 153 1115 206 0.064 1 in 300 0.91 0.073 = 87.29 1 in 10 1581 1581 1581 1582 1582 1583 1583 1583 1583 168	m/s m3/s years (m2) (m2) mm/hr m3/s (mm) m/s m3/s years (m2) (mm) m/s m3/s	$ \cdot \ i = \frac{a}{(t_d + b)^c} $ OK
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2 Runoff Estimation Design Return Period Paved Area Unpaved Area Total Equivalent Area Rainfall Intensity, I* Design Discharge Rate, Q U Channel Channel Size Gradient Velocity Capacity Utilization U Channel 5 (Zone A1 + A2 - Runoff Estimation Design Return Period Paved Area Unpaved Area Unpaved Area Unpaved Area Ctal Equivalent Area Rainfall Intensity, I - Design Discharge Rate, Q	760 + 511 x 0.7 = 511 x 0.3 = 1118 x 0.95 + 153 x 0.35 = 0.278 x 1115 x 206 / 1000000 = 0.064 / 0.073 + B1 + B2 + C1) 463 + 1118 = 1581 x 0.95 + 153 x 0.35 =	1 in 450 0.60 0.021 = 31.18 1 in 10 1118 153 1115 206 0.064 1 in 300 0.91 0.073 = 87.29 1 in 10 1581 153 1555 206 0.089	m/s m3/s years (m2) (m2) (m2) (m2) (m3/s (mm) m3/s years (m2) (m2) (m2) (m2) (m2) (m2) (m2) (m2)	$ \cdot \ i = \frac{a}{(t_d + b)^c} $ OK
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2 Runoff Estimation Design Return Period Paved Area Unpaved Area Total Equivalent Area Rainfall Intensity, I* Design Discharge Rate, Q U Channel Channel Size Gradient Velocity Capacity Utilization U Channel 5 (Zone A1 + A2 - Runoff Estimation Design Return Period Paved Area Unpaved Area Unpaved Area Total Equivalent Area Rainfall Intensity, I* Design Discharge Rate, Q U Channel Channel Size Gradient Velocity Capacity Utilization	760 + 511 x 0.7 = 511 x 0.3 = 1118 x 0.95 + 153 x 0.35 = 0.278 x 1115 x 206 / 1000000 = 0.064 / 0.073 + B1 + B2 + C1) 463 + 1118 = 1581 x 0.95 + 153 x 0.35 =	1 in 450 0.60 0.021 = 31.18 1 in 10 1118 153 1115 206 0.064 1 in 300 0.91 0.973 = 87.29 1 in 10 1581 1583 1583 1595 206 0.089	m/s m3/s years (m2) (m2) (m2) (m2) (m3/s (mm) m/s m3/s years (m2) (m2) (m2) (m2) (m2) (m2) (m3/s) (m3/s)	$ \cdot \ i = \frac{a}{(t_d + b)^c} $ OK
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2 Runoff Estimation Design Return Period Paved Area Unpaved Area Total Equivalent Area Rainfall Intensity, I* Design Discharge Rate, Q U Channel Channel Size Gradient Velocity Capacity Utilization U Channel 5 (Zone A1 + A2 - Runoff Estimation Design Return Period Paved Area Unpaved Area Unpaved Area Rainfall Intensity, I* Design Discharge Rate, Q U Channel Size Gradient Velocity Utilization	760 + 511 x 0.7 = 511 x 0.3 = 1118 x 0.95 + 153 x 0.35 = 0.278 x 1115 x 206 / 1000000 = 0.064 / 0.073 + B1 + B2 + C1) 463 + 1118 = 1581 x 0.95 + 153 x 0.35 =	1 in 450 0.60 0.021 = 31.18 1 in 10 1118 153 1115 206 0.064 1 in 300 0.91 0.073 = 87.29 1 in 10 1581 153 1555 206 0.089	m/s m3/s years (m2) (m2) (m2) (m2) (m3/s (mm) m3/s years (m2) (m2) (m2) (m2) (m2) (m2) (m2) (m2)	$ \cdot \ i = \frac{a}{(t_d + b)^c} $ OK
Channel Size Gradient Velocity Capacity Utilization U Channel 4 (Zone B1 + B2 Runoff Estimation Design Return Period Paved Area Unpaved Area Total Equivalent Area Rainfall Intensity, 1* Design Discharge Rate, Q U Channel Channel Size Gradient Velocity Capacity Utilization U Channel 5 (Zone A1 + A2 - Runoff Estimation Design Return Period Paved Area Unpaved Area Unpaved Area Total Equivalent Area Rainfall Intensity, 1* Design Discharge Rate, Q	760 + 511 x 0.7 = 511 x 0.3 = 1118 x 0.95 + 153 x 0.35 = 0.278 x 1115 x 206 / 1000000 = 0.064 / 0.073 + B1 + B2 + C1) 463 + 1118 = 1581 x 0.95 + 153 x 0.35 =	1 in 450 0.60 0.021 = 31.18 1 in 10 1118 153 1115 206 0.064 1 in 300 0.91 0.973 = 87.29 1 in 10 1581 1583 1583 1595 206 0.089	m/s m3/s years (m2) (m2) (m2) (m2) (m3/s (mm) m/s m3/s years (m2) (m2) (m2) (m2) (m2) (m2) (m3/s) (m3/s)	$ \cdot \ i = \frac{a}{(t_d + b)^c} $ OK

Appendix B - Proposed Development Layout Plan

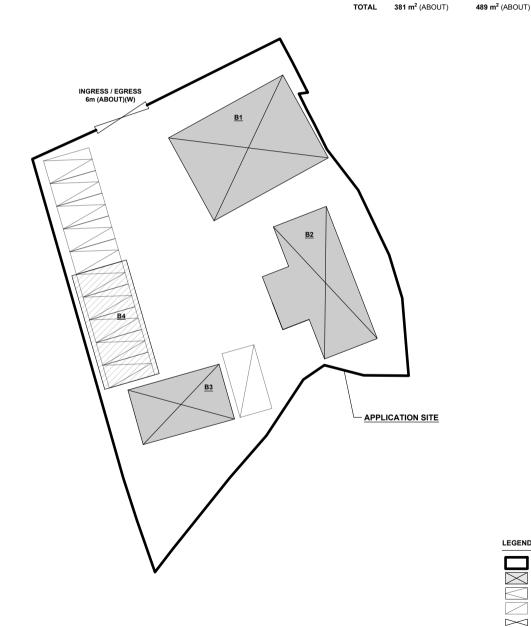
: 1,217 m² (ABOUT) : 381 m² (ABOUT) APPLICATION SITE AREA COVERED AREA UNCOVERED AREA (ABOUT) : 836 m² PLOT RATIO (ABOUT) : 0.4 SITE COVERAGE : 31 % (ABOUT) NO. OF STRUCTURE

: NOT APPLICABLE

(ABOUT)

: 489 m²

: 489 m²


DOMESTIC GFA NON-DOMESTIC GFA

TOTAL GFA

BUILDING HEIGHT : 3 - 8 m (ABOUT) NO. OF STOREY

AREA HEIGHT	
B1 (G/F) RESTAURANT, KITCHEN & WASHROOM 138 m² (ABOUT) 138 m² (ABOUT) 3.5m (ABOU	UT)(1-STOREY)
B2 (G/F) SHOP AND SERVICES 108 m² (ABOUT) 108 m² (ABOUT) 8m (ABOUT) (1/F) OFFICE AND WASHROOM 108 m² (ABOUT)	T)(2-STOREY)
B3 SHOP AND SERVICES $60 \text{ m}^2 \text{ (ABOUT)}$ $60 \text{ m}^2 \text{ (ABOUT)}$ $3 \text{ m} \text{ (ABOUT)}$	T)(1-STOREY)
B4 RAIN SHELTER FOR PARKING SPACE 75 m² (ABOUT) 75 m² (ABOUT) 3m (ABOUT	T)(1-STOREY)

TEMPORARY SHOP AND SERVICES AND EATING PLACE FOR A PERIOD OF 5 YEARS

PLAN 4

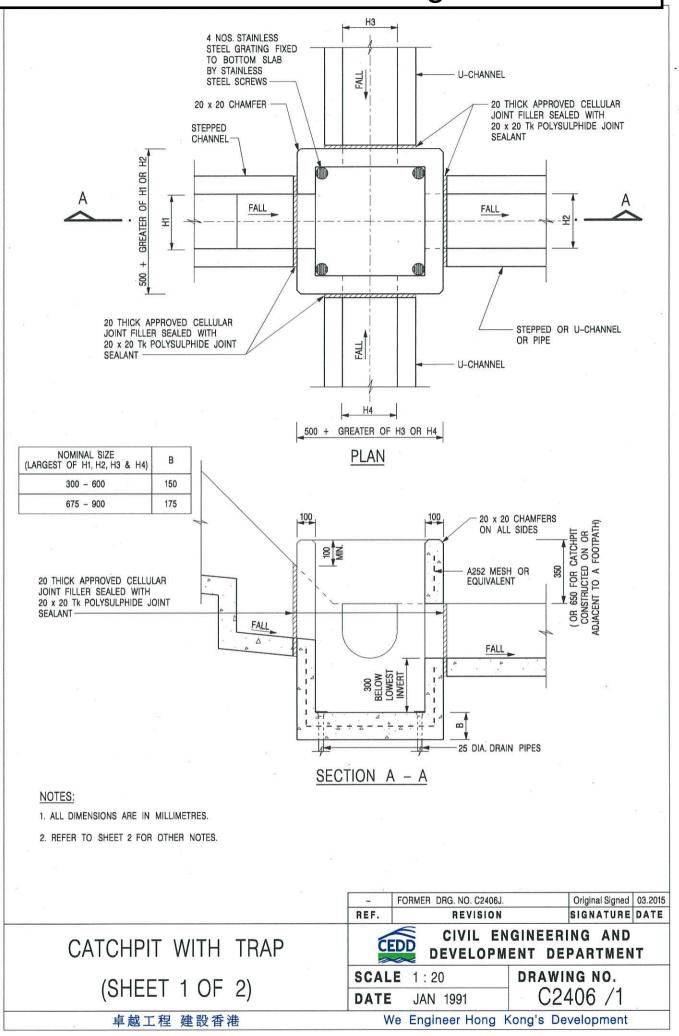
LOT 390 RP (PART) IN D.D. 106, KAM SHEUNG ROAD, YUEN LONG, NEW TERRITORIES

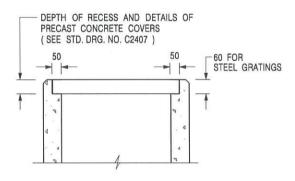
SCALE	
1:400 @ A4	
DRAWN BY	DATE
OL	19.12.2023
REVISED BY	DATE
APPROVED BY	DATE
DWG. TITLE	
LAYOUT PLAN	

LEGEND

APPLICATION SITE STRUCTURE PARKING SPACE LOADING / UNLOADING SPACE

INGRESS / EGRESS


PARKING AND LOADING/UNLOADING PROVISIONS


NO. OF PRIVATE CAR PARKING SPACE DIMENSION OF PARKING SPACE : 5m (L) X 2.5m (W)

NO. OF L/UL SPACE FOR LIGHT GOODS VEHICLE DIMENSION OF L/UL SPACE

: 7m (L) X 3.5m (W)

Appendix C - Reference Drawings

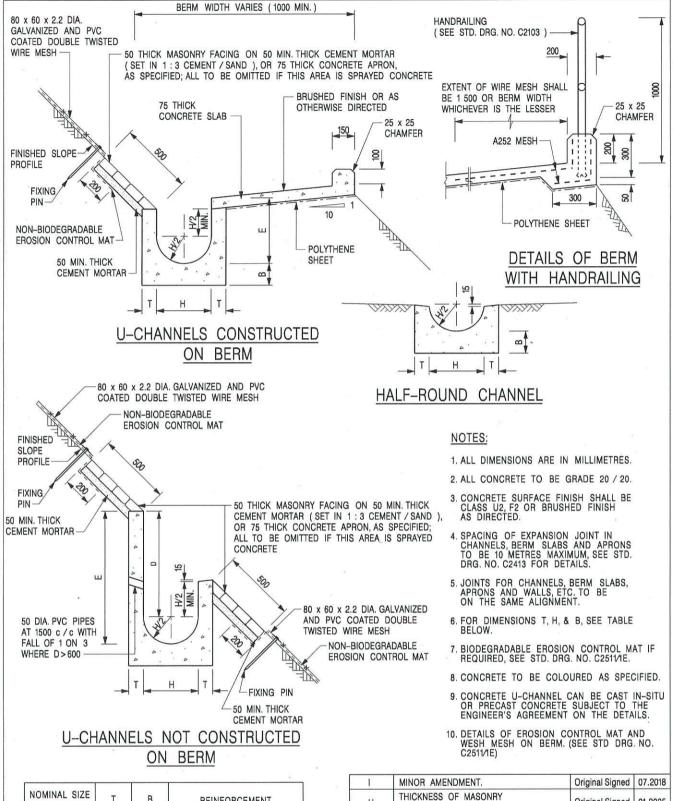
ALTERNATIVE TOP SECTION FOR PRECAST CONCRETE COVERS / GRATINGS

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES.
- 2. ALL CONCRETE SHALL BE GRADE 20 /20.
- 3. CONCRETE SURFACE FINISH SHALL BE CLASS U2 OR F2 AS APPROPRIATE.
- 4. FOR DETAILS OF JOINT, REFER TO STD. DRG. NO. C2413.
- 5. CONCRETE TO BE COLOURED AS SPECIFIED.
- UNLESS REQUESTED BY THE MAINTENANCE PARTY AND AS DIRECTED BY THE ENGINEER, CATCHPIT WITH TRAP IS NORMALLY NOT PREFERRED DUE TO PONDING PROBLEM.
- 7. UPON THE REQUEST FROM MAINTENANCE PARTY, DRAIN PIPES AT CATCHPIT BASE CAN BE USED BUT THIS IS FOR CATCHPITS LOCATED AT SLOPE TOE ONLY AND AS DIRECTED BY THE ENGINEER.
- FOR CATCHPITS CONSTRUCTED ON OR ADJACENT TO A FOOTPATH, STEEL GRATINGS (SEE DETAIL 'A' ON STD. DRG. NO. C2405 /2) OR CONCRETE COVERS (SEE STD. DRG. NO. C2407) SHALL BE PROVIDED AS DIRECTED BY THE ENGINEER.
- 9. IF INSTRUCTED BY THE ENGINEER, HANDRAILING (SEE DETAIL 'J' ON STD. DRG. NO. C2405 /5; EXCEPT ON THE UPSLOPE SIDE) IN LIEU OF STEEL GRATINGS OR CONCRETE COVERS CAN BE ACCEPTED AS AN ALTERNATIVE SAFETY MEASURE FOR CATCHPITS NOT ON A FOOTPATH NOR ADJACENT TO IT. TOP OF THE HANDRAILING SHALL BE 1 000 mm MIN. MEASURED FROM THE ADJACENT GROUND LEVEL.
- 10. MINIMUM INTERNAL CATCHPIT WIDTH SHALL BE 1 000 mm FOR CATCHPITS WITH A HEIGHT EXCEEDING 1 000 mm MEASURED FROM THE INVERT LEVEL TO THE ADJACENT GROUND LEVEL. AND, STEP IRONS (SEE DSD STD. DRG. NO. DS1043) AT 300 c/c STAGGERED SHALL BE PROVIDED. THICKNESS OF CATCHPIT WALL FOR INSTALLATION OF STEP IRONS SHALL BE INCREASED TO 150 mm.
- FOR RETROFITTING AN EXISTING CATCHPIT WITH STEEL GRATING, SEE DETAIL 'G' ON STD. DRG. NO. C2405 /4.
- SUBJECT TO THE APPROVAL OF THE ENGINEER, OTHER MATERIALS CAN ALSO BE USED AS COVERS / GRATINGS.

REF.	REVISION	SIGNATURE	DATE
-	FORMER DRG. NO. C2406J.	Original Signed	03.2015
Α	MINOR AMENDMENT.	Original Signed	04.2016

CATCHPIT WITH TRAP (SHEET 2 OF 2)



CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

SCALE 1:20 **DATE** JAN 1991

drawing no. C2406 /2A

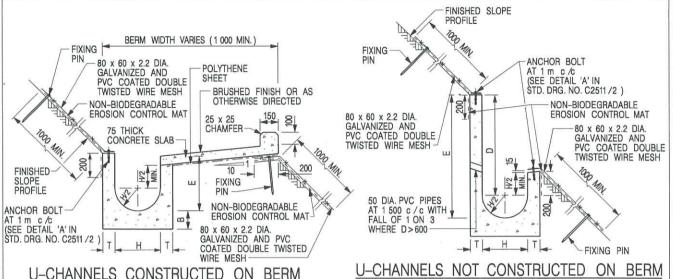
卓越工程 建設香港

NOMINAL SIZE H	T	В	REINFORCEMENT
300	80	100	A252 MESH PLACED CENTRALLY AND T=100
375 - 600	100	150	WHEN E>650
675 - 900	125	175	A252 MESH PLACED CENTRALLY

REF.	REVISION	SIGNATURE	DATE
В	MINOR AMENDMENTS.	Original Signed	3.94
С	150 x 100 UPSTAND ADDED AT BERM.	Original Signed	6.99
D	MINOR AMENDMENT.	Original Signed	08.2001
E	DRAWING TITLE AMENDED.	Original Signed	11.2001
F	GENERAL REVISION.	Original Signed	12.2002
G	MINOR AMENDMENT.	Original Signed	01.2004
Н	THICKNESS OF MASONRY FACING AMENDED.	Original Signed	01.2005
1	MINOR AMENDMENT.	Original Signed	07.2018

DETAILS OF HALF-ROUND AND U-CHANNELS (TYPE A -WITH MASONRY APRON)

卓越工程 建設香港


CEDD

CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

SCALE 1:25

DATE JAN 1991

C2409l

U-CHANNELS CONSTRUCTED ON BERM WITH NON-BIODEGRADABLE EROSION CONTROL MAT U-CHANNELS NOT CONSTRUCTED ON BERM WITH NON-BIODEGRADABLE EROSION CONTROL MAT

BIODEGRADABLE

EROSION CONTROL MAT

07.2018

12.2017

01.2005

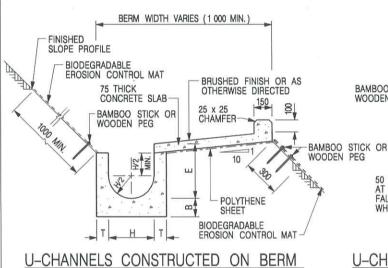
12.2002

08 2001

6.99

3.94

10.92


DATE

Original Signed

SIGNATURE

FINISHED SLOPE PROFILE

ш

WITH BIODEGRADABLE

EROSION CONTROL MAT

BAMBOO STICK OR WOODEN PEG

U-CHANNELS NOT CONSTRUCTED ON BERM

WITH BIODEGRADABLE

EROSION CONTROL MAT

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES.
- 2. ALL CONCRETE TO BE GRADE 20 /20.
- 3. CONCRETE SURFACE FINISH SHALL BE CLASS U2, F2 OR BRUSHED FINISH AS DIRECTED.
- SPACING OF EXPANSION JOINT IN CHANNELS, BERM SLABS AND APRONS TO BE 10 METRES MAXIMUM, SEE STD. DRG. NO. C2413 FOR DETAILS.
- 5. JOINTS FOR CHANNELS, BERM SLABS, APRONS AND WALLS, ETC. TO BE ON THE SAME ALIGNMENT.
- 6. FOR DIMENSIONS T, H, & B, SEE TABLE BELOW.
- 7. FOR TYPICAL FIXING PIN DETAILS, SEE STD. DRG. NO. C2511/2.
- 8. MINIMUM SIZE OF 25 x 50 x 300mm SHALL BE PROVIDED FOR WOODEN PEG.
- MINIMUM SIZE OF 10mm DIAMETER WITH 200mm LONG SHALL BE PROVIDED FOR BAMBOO STICK.
- 10. THE FIXING DETAILS OF NON-BIODEGRADABLE AND BIODEGRADABLE EROSION CONTROL MATS ON EXISTING BERM SHALL REFER TO STD. DRG. NO. C2511/1.

NOMINAL SIZE H	Ţ	В	REINFORCEMENT
300	80	100	A252 MESH PLACED
375 - 600	100	150 WHEN E>650	CENTRALLY AND T=100 WHEN E>650
675 - 900	125	175	A252 MESH PLACED CENTRALLY

	DETAILS	OF I	HALF-	ROUN	ID A	ND
	U-CHAN	NELS	(TYP	ЕВ.	– WI	TH
I	FROSION	CON	ITROL	MAT	APF	(NO)

6
CEDD
CEDU
nac

Н

G

F

E

D

C

В

A

REF.

BAMBOO STICK OR WOODEN PEG

50 DIA. PVC PIPES AT 1 500 c/c WITH FALL OF 1 ON 3

WHERE D>600

CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

SCALE DIAGRAMMATIC
DATE JAN 1991

MINOR AMENDMENT.

MINOR AMENDMENT

GENERAL REVISION.

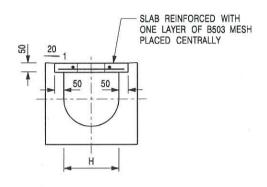
MINOR AMENDMENT.

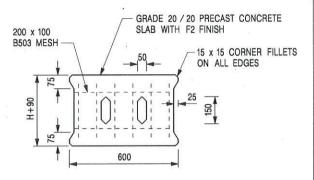
MINOR AMENDMENT.

MINOR AMENDMENT

FIXING DETAILS OF BIODEGRADABLE

150 x 100 UPSTAND ADDED AT BERM

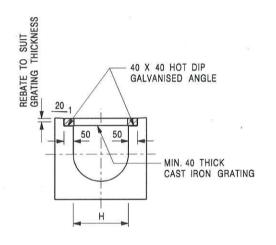

REVISION

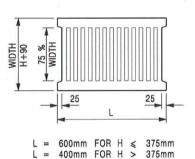

EROSION CONTROL MAT ADDED.

DIMENSION TABLE AMENDED

C2410

卓越工程 建設香港




PLAN OF SLAB

TYPICAL SECTION

U-CHANNELS WITH PRECAST CONCRETE SLABS

(UP TO H OF 525)

TYPICAL SECTION

CAST IRON GRATING

(DIMENSIONS ARE FOR GUIDANCE ONLY, CONTRACTOR MAY SUBMIT EQUIVALENT TYPE)

U-CHANNEL WITH CAST IRON GRATING

(UP TO H OF 525)

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES.
- 2. H=NOMINAL CHANNEL SIZE.
- ALL CAST IRON FOR GRATINGS SHALL BE GRADE EN-GJL-150 COMPLYING WITH BS EN 1561.
- 4. FOR COVERED CHANNELS TO BE HANDED OVER TO HIGHWAYS DEPARTMENT FOR MAINTENANCE, THE GRATING DETAILS SHALL FOLLOW THOSE AS SHOWN ON HyD STD. DRG. NO. H3156.

REF.	REVISION	SIGNATURE	DATE
Α	CAST IRON GRATING AMENDED.	Original Signed	
В	NAME OF DEPARTMENT AMENDED.	Original Signed	01.2005
С	MINOR AMENDMENT. NOTE 3 ADDED.	Original Signed	12.2005
D	NOTE 4 ADDED.	Original Signed	06.2008
E	NOTES 3 & 4 AMENDED.	Original Signed	

COVER SLAB AND CAST IRON GRATING FOR CHANNELS

CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

 SCALE
 1:20
 DRAWING NO.

 DATE
 JAN 1991
 C2412E

卓越工程 建設香港

Annex A – Photographic records showing the presence and existing condition of the discharge path

